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Experiments are described in which a radial temperature gradient is maintained along 
the lower horizontal boundary of a rotating annulus containing a thermally convecting 
fluid; the vertical side walls and upper horizontal boundary are nominally insulating. 
Comparison is made with the non-rotating experiments of Rossby (1965) and the 
same general asymmetric circulation is observed, i.e. that of a weakly stratified interior 
of slowly descending fluid occupying most of the annular gap, overlying a thin thermal 
layer of large vertical temperature gradients, stable over the cold part of the base and 
statically unstable over the warmer part; the circulation is completed by a narrow 
region of rising motion at the warm end of the base. 

A boundary-layer scaling analysis demonstrates the existence of six flow regimes, 
depending on the magnitude of a quantity Q defined such that Q is the square of the 
ratio of the (non-rotating) thermal-layer scale to the Ekman-layer scale. For small Q 
the flow is only weakly modified by rotation but as Q increases past unity rotation 
tends to thicken the thermal layer. Also presented are some numerical similarity 
solutions for the special case of a quadratic temperature distribution on the lower 
boundary and partially covering the range of Q achieved in the experiments, which is 
zero to ten. Above a certain critical value of Q (for the geometry used here Q, = 3.4) a 
baroclinic wave regime exists but is not examined in detail here although a brief 
discussion of an instability problem is given. Throughout comparisons are drawn 
between the experimental results and theoretical aspects of the problem. 

It is thought that the essential features of a system thermally driven in this way hare 
their counterparts in natural systems such as the large-scale thermally induced ocean 
circulation driven by the latitudinal variation of incoming solar radiation. 

1. Introduction 
Laboratory experiments have an established role in many aspects of geophysical 

fluid dynamics; the present experiments are concerned with the effects of rotation on a 
thermally convecting fluid which is heated and cooled along a horizontal boundary, 
a11 other boundaries being considered as nominally insulating. The original stimulus 
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was essentially an oceanographic one concerned with the strongly asymmetric nature 
of the general ocean circulation, characterized by narrow regions of downwelling at 
high latitudes, where there is a net cooling, and a slow upwelling elsewhere. 

Despite the objections of Jeffreys (1925), the remarks of Sandstrom (1908) and 
Bjerknes (1916) denying that a significant thermal circulation can be driven by a 
distribution of heat sources and sinks on a horizontal boundary gained some acceptance 
(e.g. Defant 1961). Stommel (1950, 1962) interpreted the essential asymmetry of the 
problem on the basis of a simple theoretical model; this led to the successful demonstra- 
tion of the asymmetry in the non-rotating laboratory experiments of Rossby (1965). 
Rossby used a rectangular tank with insulating upper walls and maintained a linear 
temperature gradient along the lower boundary. The resulting picture was of a thin 
strongly stratified thermal layer over the base with the flow directed towards the hot 
end of the cell and feeding into a narrow rising plume. The interior was weakly stably 
stratified and attained a temperature equivalent to about 70 yo of the applied tempera- 
ture difference. Rossby explained the asymmetry as a consequence of the relative 
efficiencies of convective and conductive heat transport. All heat must enter and leave 
through the base, thus warming the interior advectively and maintaining an overall 
balance by conduction to the base. Rossby was able to estimate the heat flux and 
circulation strength and found these values compared favourably with his scaling 
analysis. Similar unpublished experiments by Miller (1968), performed with a saw- 
tooth form of lower-boundary temperature gradient, to remove the influence of the 
side wall from the plume, exhibited the same general characteristics. 

There have been several relevant analyses of both rotating and non-rotating 
systems. The most recent non-rotating study, that of Killworth & Manins (1980) was 
prompted by Rossby’s experiments and the numerical study of Beardsley & Festa 
(1972). Killworth & Manins derive a similarity solution for the boundary layer under 
the condition of a parabolic distribution of buoyancy on the base. Stern (1975) and 
Daniels (1976) have made theoretical studies, in restricted parameter regimes, of the 
flow in a narrow-gap rotating annulus driven by a specified temperature distribution 
on the lower boundary. A scaling analysis which effectively defines the various flow 
regimes for the rotating problem is presented in 9 3 and establishes the range of validity 
of Stern and Daniels ’ analyses. Section 5 extends the similarity solution of Killworth & 
Manins to the rotating case. 

In  the controlled experimental work described here the working fluid was contained 
in the annular gap between two vertical concentric cylinders rotating about their 
common axis. The side walls and lid were nominally insulating and a radial temperature 
was maintained along the base. This, of course, differs from the traditional annulus 
experiments, in which a horizontal temperature gradient is maintained by differentially 
heating the side walls. Such systems have been the subject of intensive investigations 
(e.g. Hide 1969; Hide & Mason 1975) and many features of rotating, baroclinic flows 
have been elucidated in this way. It was the intention of the present experiments to 
establish the controlling external parameters whilst concentrating attention on the 
structure of the thermal boundary layer and characteristic features such as the varia- 
tion of the temperature of the interior region and the heat transport. Details of the 
apparatus and techniques can be found in fj 2. The experimental results are presentedin 
f, 4, in which it will be seen that the rotating flows preserve the same essential character- 
istics as the non-rotating flow but a new feature arises when the baroclinic azimuthal 
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FIGURE 1. A schematic cross-section through the annulus. The labelled features are: A, coppor 
base; B, cold water channels; C, warm water coils; D, outer cylinder; B, inner cylinder; F, lid; 
B, thermocouple array; H, convection chamber. The thermocouple positions are labelled I to V 
andarepositionedradiallyat r = a+ (0-07,0.25,0*50,0-72,0.92) (b-u) .  

flow induced by the rotation becomes unstable and exhibits a wave flow similar to that 
observed in the side-wall heated annulus. A detailed analysis of the structure of these 
waves and their influence on the basic flow should be the subject of future study and 
only a few largely qualitative comments can be made here. 

2. Experimental apparatus 
Two fluids were employed in the experiments, water and paraffin. The properties of 

water are well tabulated; the relevant properties of the samples of paraffin used, at  
20 "C, are a = (9.4 f 0.3) x K-l, v = 1-82 x cm2 s-l ( & 5 yo) and K = 1.1 
x cm2 s-l ( & 10 Yo). The working fluid was contained in the annular gap 

between two concentric acrylic cylinders, the outer of inner radius b = 20.3cm and 
thickness 2.54 cm, and the inner of outer radius a = 10.0 cm and thickness 1 cm. The 
inner cylinder was filled with insulating polystyrene foam. The lid waa of 1 cm thick 
acrylic sheet and was in contact with the fluid; for most experiments the depth was 
fixed at 10 cm. The gap width, (b -a), was fixed at a value of 10.3 f 0.05 cm for most 
of the experiments. The cylinders were secured to a copper disk, thickness 0.95 cm, 
along which a radial temperature gradient could be maintained by circulating water 
through copper coils soldered to the rim and channels cut inward of the inner cylinder. 
Conventionally T(b) > T(a)  and once established the temperature difference defined by 
the positions of the side walls waa found to  be constant to f 0-05 K over periods of 
several hours. Because of the curvature the base temperature was approximated by 
T(r,O) = T(a)  + ATln (r/a)/ln @ / a ) .  Itwaa intended that the heat flux through the base 
be much greater than that through the fluid in order to decouple the lower boundary 
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radius of inner cylinder 
radius of outer cylinder 
depth of fluid 
distance from rotation axis 
height above annulus base 
radial velocity component, positive outwards 
azimuthal velocity component, positive anticlockwise 
vertical velocity component, positive upwards 
thermal layer depth 
Ekman layer depth = ( R / v ) ~  
fluid density 
fluid temperature 
maximum imposed temperature difference on the basc 
mean applied temperature = &(T(u) + T ( b ) )  
rotation rate 
acceleration due to gravity 
coefficient of thermal expansion 
kinematic viscosity 
thermal diffusivity 

aa ab aa ab 
Jacobian operator, J ( a ,  b) = - - - - - 

a x a z  a z a x  
Rayleigh number = g a A T ( b -  ~ ) S / Y K  

Ekman number = v/PR(b - 
Prandtl number = Y / K  

Nusselt number = ratio of total heat transfer to that accomplished by a solid with the 
same thermal properties. 
(R-b/Eh)2 = 2n( b - a ) * K % / ( g a A T ) t  d 

TABLE 1. Notation and dimensionless parameters. Experimentally the non-dimensional para- 
meters were workedout using values of the fluid physical properties appropriate to the temperature 
p. A schematic representation of the apparatus is given in figure 1. 

condition from fluid motions; it is estimated that the fluid heat flux was always < 10 yo 
of that through the base. 

radians) and centred on a turntable driven 
directly by a servo-controlled permanent magnet d.c. motor. Long-term stability of 
the rotation rate (over several hours) was one part in lo3 and short-term stability (a 
few tens of rotation periods) one part in lo4. For these experiments the rotation rate 
waa conveniently varied over the range 0- 1 to 2 radians per second, the upper limit 
ensuring that the geopotentials remain almost parallel to the end walls. The maximum 
temperature difference which could be maintained across the gap width of 10.3 cm 
was x 15K. 

Temperatures were measured by copper-constantan thermocouples, which have a 
sensitivity of z 40 pV K-l; to establish the base temperature distribution thermo- 
coupIe junctions made from 125pm wire were buried in tightly fitting holes arranged 
in a spiral in the underside of the base, giving a radial spacing of approximately one 
junction per centimetre. Fluid temperatures were measured using a thermocouple 
array formed by stretching a single horizontal 50pm constantan wire radially between 
two vertical supports made from 0.05 cm diameter hypodermic needles. Vertically 
hung 50pm copper wires were soldered at  intervals to form junctions a t  five radial 
positions. The upper ends of the supports and wires were held in an acrylic block cap- 
able of being moved up or down by means of a stepper-motor-driven screw thread. 

The annulus was levelled (to within 
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The array was dipped into the fluid through a narrow slot in the lid; repeatability of 
positioning was better than 0.01 cm. A schematic cross-section of the annulus including 
the relative position of the thermocouple and the spacing of the junctions is shown in 
figure 1. 

To help approximate insulating boundary conditions the near-isothermal state of 
much of the fluid was exploited. The annulus, turntable and all attendant low-level 
signal cables were contained within an enclosure whose air temperature could be 
maintained at a value which would minimize the temperature difference across the 
side walls and lid. This also aided the stability of the electrical system, which waa such 
that although the absolute aacuracy of a single measurement was & 0.05 K the scatter 
in measurements made when the fluid was isothermal was c & 0.01 K over periods of 
about an hour. 

Flow visualization and some velocity measurements were accomplished using the 
thymol blue indicator technique described by Baker (1966), which is suitable of 
course for use only in aqueous solutions. A single horizontal 75pm diameter copper 
wire was stretched radially between two vertical supports which were attached to the 
probe positioner normally used for thermocouple measurements. Sections of the wire 
were left uninsulated, enabling a qualitative investigation of the flow at different levels 
and some direct measurements via sequences of photographs taken by a remotely 
controlled motor-driven 35 mm camera attached to a tripod mounted on the turntable. 

3. Boundary-layer scalings and parameter ranges 
The experimental work described in later sections deals with the flow in an annulus 

of which the outer cylinder has radius b = 20.3cm and the inner cylinder (in most 
experiments) radius a = 10.0 cm. In this section an idealized problem is considered in 
which curvature is neglected and the side and upper boundaries are taken as perfectly 
insulating. This neglect of curvature requires that the gap width of the annulus be 
much less than the mean radius, i.e. that the quantity 2(b-a)/(b+a) be much less 
than 1. In practice this had a value of - 0.G8, except in a very few experiments with 
a larger inner cylinder (to give (b - a) = 5 cm) when it was reduced to - 0.4. Further- 
more it is experimentally difficult to achieve perfectly insulating boundary conditions, 
although attention was given to minimizing the temperature difference across the 
side walls and lid. Thus it is not possible, in general, to make direct comparison between 
experiment and an idealized study, although the latter is capable of describing the 
characteristic features and in particular their dependence on the impressed para- 
meters, such as the temperature difference and rotation rate. 

The system is defined by four non-dimensional parameters. These are the ‘horizontal ’ 
Rayleigh and Ekman numbers, Ra and E, Prandtl number cr, and an aspect ratio, 
depth i width, normally assumed to be of order unity. Notation and the definition of 
various non-dimensional numbers, as used experimentally, are summarized in table 1. 
The Boussinesy equations of motion for steady, two-dimensional incompressible flow, 
neglecting curvature and assuming density to be a linear function of temperature, may 
be written as (with letters identifying terms for later convenience): the vorticity 
equation 

vV4fi = Ax-2RvZ-J(~,V2+) (3.1) 

[A = B + C + U ] ;  
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the buoyancy (or heat) equation 
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K V ~ A  = - J($, A) 
[E = F]; 

and the azimuthal momentum equation 

vV2v = 2S2$,+ J(v ,  $) 
[G = H +I]. 

(3.3) 

Here suffixes denote differentiation, $ is a stream function defined so that u = $,, 
w = - $=, and A is the buoyancy ga(T - T,) relative to the coldest part of the fluid, of 
temperature T,. The relevant boundary conditions are a specified buoyancy distribu- 
tion on the (rigid) base, and rigid, insulating vertical side walls and horizontal lid. 
In this system the Rayleigh and Ekman numbers are now Ra = AmL3(v4-l and 
E = v(2QL2)-', where Am is the maximum imposed buoyancy difference and L is a hori- 
zontal length scale. For the annulus this can be identified with the gap width (b  -a). 

Rossby ( 1965) demonstrated that the horizontal thermal layer has anon-dimensional 
thickness Ra-f, when Ra is large, in the non-rotating case. In a homogeneous rotating 
system, however, the thinnest horizontal boundary layer is an Ekman layer, of non- 
dimensional thickness E )  (e.g. Fein 1978), when E is small. It might thus be antici- 
pated that the ratio of these two small quantities will be of importance in describing 
the flow. This turns out to be the case. We define the parameter 

Q = (Ru-) /E))~ ,  

which has the convenient property that Q is a linear function of the rotation rate. 
Using straightforward scaling analyses it appears that the system can be divided into 

six regimes depending mainly on the magnitude of Q and only weakly on the other 
parameters. For a fixed, large Rayleigh number (and assuming cr to be fairly large) 
these six regimes can be written as: 

(i) no rotation, Q = 0; 

(ii) very weak rotation, Q < cr-l 6 1; 

(iii) weak rotation, cr-1 < Q < 1 ; 

(iv) medium rotation, Q - 1; 

(v) strong rotation, 1 + Q < R&; 
(vi) very strong rotation, Rai'5 < Q ;  

and their vertical structures are discussed briefly in turn. We defer consideration of 
the side-wall layers until later. 

(i) The non-rotating case has been dealt with by Killworth & Manins (1980), who 
also obtained similarity solutions for the case of a parabolic distribution of buoyancy 
on the base, The stream function $ is O ( ~ K R U * )  in the interior of the fluid, which is 
homogeneous, with a uniform buoyancy which depends on the details of the imposed 
buoyancy at the base. In the interior, vorticity Vz$ is a function of the stream function. 
There are two horizontal boundary layers on the base. The thicker is a dynamic homo- 
geneous layer of non-dimensional thickness cr4Ra-L in which the viscous term (A) 
balances advection of vorticity (D) and brings $ to zero (a similar layer occurs a t  the 
lid). In the thinner, buoyancy layer, of non-dimensional thickness Ra-4, $ is reduced 
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by a factor 04. The balance is then A N B, E N F, so that this layer reduces A to its 
uniform interior value A, by a balance of advection and diffusion of buoyancy. 

(ii) As & increases from zero but remains smaller than cr-l, the very weak regime is 
entered. The azimuthal velocity v is of order 2QL, and the Taylor-Proudman theorem 
holds in the homogeneous interior (v, = u = 0). At  the lid there are two horizontal 
layers. The thicker ( N L Ra-* ~ 4 Q - l )  reduces the size of $ to vRu* Q*, by nonlinear 
balances C - D, H N I, which then permits a thinner, traditional Ekman layer to 
bring $ and v to  zero. At the base, the dynamic and buoyancy layers remain, with v 
passively advected and diffused by the zonal flow (G - H, I; A N D) in the dynamic 
layer, and vanishing in the buoyancy layer. 

(iii) Increasing Q into the weak regime rescales v and $ to KRu~L-', ~Ru4Q-a 
respectively. Thus v and u are the same order of magnitude, and at the lid there is only 
a simple Ekman layer. The interior remains homogeneous, with u = V~ = 0 as before. 
At the base the dynamic layer is replaced by another Ekman layer, much thicker (as Q 
is small) than the thermal layer, which retains the non-rotating form. The Ekman layer 
brings $ and v to zero, and is continuous between Ekman and thermal layers. 
Consequently the thermal layer depth h and Nusselt numbers are of the same order as 
found by Rossby (1965) and Killworth & Manins (1980): 

h - LRa-4 and Nu N Rai. 

(iv) When Q becomes order unity (medium rotation) the thermal and Ekman layers 
at the base merge; this regime will turn out to be relevant for the experiments and the 
similarity solutions of $ 5 .  The appropriate non-dimensionalization for the thermal/ 
Ekman layer are $ = KRu*$', v = KRa8L-1v', A = A,,,A8, x = Lx', z = LRu-aC and, 
dropping primes, (3.1 )-( 3.3) become 

together with a homogeneous interior and Ekman layer at  the lid. Heuristically it can 
be seen from (3.4) to (3.6) that the thermal layer, when Q is still fairly small, will be 
affected by rotation at only large values of 5. As & increases, the increased Ekman 
spiral tendency produces a reduction in the size of $, and a corresponding increase in 
the thermal-layer thickness (as A decays more slowly). Hence the Nusselt number, 
formally Nu = Ra*f(Q) for some functionf(Q), will tend to decrease with increasing 
Q. The reduction in the rate of decay of A with 5, as Q increases, similarly suggests 
that the abyssal buoyancy A, should increase with &. Finally, inspection of the 
'thermal wind' balance B N C indicates that v will decrease with increasing Q for 
large enough &, from which it follows that v should reach a maximum for Q - 1. 

(v) As Q becomes larger the Ekman layer lies well within the thermal layer, thus 
removing the frictional constraint of the lower boundary from the thermal layer, and 
establishing a 'thermal wind' balance B - C. This strongly rotating regime was dis- 
cussed by Stern (1975) and Daniels (1976) and is the only case for which a non- 
similarity solution is known.? The interior balances, and the Ekman layer at the lid, 

t Stern's solution reduces to the similarity eolution for quadratic buoyancy forcing at the base. 
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4 

FIGURE 2. Schematic variation of quantities as Q varies, on log-log plot. Shown are (a) $ / K R ~ ;  
(6) v L / ~ R a f ;  (c) AJA,,(L); (d)NuRa-i. In cams (a) and ( b )  the interior values are shown. 

remain unchanged. Compatibility between upper and lower Ekman layers forces a 
reduction in the magnitudes of $ and v, to KRai Q3, KRa? Q-* L-l respectively. This 
yields a much wider thermal layer, with thickness h - LRu-) &-a and correspondingly 
N u  N Rui &-3. The dynamics of the lower Ekman layer are essentially homogeneous, 
although this narrow layer can and does change the vertical buoyancy gradient Ae. The 
interior buoyancy A, is now the maximum value applied to the base (plus a term of 
order &?). This had been assumed by Stern (1975) but can be derived from the theory. 

(vi) Further increase in Q (to the very strong regime) extends the thermal layer 
beyond the depth of the annulus, a situation studied by Daniels (1976) in which the 
temperature field satisfies Laplace's equation and consequently Nu = 1. This is the 
only regime in which the interior is not homogeneous. $ and v are still smaller; 
$ - KRa? Q-8: v N KRaf L-' Q-' for the top and bottom Ekman layers to be compatible. 

Figure 2 is a schematic diagram of the variation of stream function, azimuthal 
velocity interior buoyancy and heat flux as Q varies, and is intended as a summary of 
the above qualitative statements based on scaling arguments. 

The majority of the equations in the foregoing remain intrinsically nonlinear and 
therefore, intractable. To add to the difficulty, there arevertical side-wall layers present 
on x = 0 and x = L. We have seen that fluid at the hot end (x = L) rises in a thin side- 
wall layer which also becomes homogeneous above the thermal layer (the non-rotating 
arguments given by Killworth & Manins 1980, to show homogeneity still hold in the 
rotating case). The fluid is distributed laterally in the top Ekman layer and pumped 
back into the interior as a downward vertical velocity. Hence the side-wall layer on 
the cold wall (x = 0 )  must be passive, serving only to bring w to zero. Killworth k 
Manins' argument shows that $ must vanish at  the interior edge of this layer (and so, 
from (3.1), must v). 

However, the side-wall layer at x = L permits of no such facile analysis. It must 
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bring the interior v and w (both independent of z )  to zero; there is no interior u velocity, 
and the fluid is homogeneous. Surprisingly, the Rossby number of the flow in each 
regime is too high to permit a traditional linear E i -  Ei  layer structure (the balance 
being (for example) 0 N I and thus nonlinear). We are forced to assume (at least for 
the similarity solution of $5) that this side-wall layer@) resembles its linear counter- 
parts, which can indeed bring v and w to zero, and is a passive part of the dynamics. 

There is support for this assumption in the strong and very strong rotating cases. 
Stern (1975) was able to solve the interior and bottom layer problem without solving 
the side-wall layers (which were indeed passive); Daniels (1976) discussed the side-wall 
layers for very strong rotation, and these too do not affect the interior solution. It is 
thus plausible that the side-wall layers never affect the problem; but, as these are non- 
linear, confirmation is lacking. 

The side-wall layers are still more complicated in the corner region x N L, z N LRa-). 
Provided that u > 0 away from the corner, the predominant balance for +is advective- 
diffusive, as in the non-rotating case (Killworth & Manins 1980). v and A are quite 
passive, being advected and diffused by the $ field, so that the layer has only to accept 
the interior + field. The layer widens from La Ra-8 to LRa-i as u becomes smaller, so 
that horizontal friction re-enters the balance, and appears to  remain this thickness for 
u < 0. Again, the dynamics of the layer are nonlinear, and our belief that the side-wall 
layer is passive is based on the Stern and Daniels solution. 

Finally, we should note some typical parameter values. For the experiments the 
data of $ 2  indicate maximum Rayleigh numbers of w 2 x 108 ( f 2%) for water and 
w 7.5 x 108 ( f 12 yo) for paraffin. Similarly for water E 5 5 x 10-4 and for paraffin 
E 5 9 x lo-* with an uncertainty of 5 yo. Thus Et N Ra-* < 1, implying that Q - 1, 
which corresponds to the medium rotation regime. The range over which Q could be 
varied was z 0.3 to 3 for paraffin (uncertainty 7 %) and w l-lo for water (uncertainty 
1 %). This range borders on weak rotation at  the lower end and strong rotation at the 
upper. 

4. Experimental results 
(a) General churmteristics 

It quickly becomes clear during the experiments that for both rotating and non- 
rotating flows the essential features were similar to those observed by Rossby, i.e. an 
approximately isothermal interior surmounting a strongly stably stratified thermal 
layer over the colder part of the base, and an area of static instability over the warmer 
part of the base feeding into a narrow region of rising motion up the outer wall. In  the 
rotating case this fluid then enters an Ekman layer on the lid, which is in contact with 
the fluid. In agreement with Miller (1968) time-dependent motions with periods of 
order the rotation period were observed in this unstable region; it is thought these can 
be attributed to the release of thermals. 

As in the side-wall-heated annulus, for a given temperature difference, there is a 
critical rotation rate above which there exists a wave regime; flow visualization indi- 
cated that these waves drifted relative to the annulus, took up an integral number of 
lobes around the annulus and were characterized by a jet-stream type of flow. The 
perturbation to the velocity field extended throughout the depth of the fluid but 
temperature fluctuations were restricted to the thermal layer. The transition to the 
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FIGURE 3. A radial temperature cross-section at Q = 0, Ra = 2.34 x 108, working fluid water, 
d = 10.0cm. The isotherms are expressed ~ E I  fractions of AT and were drawn subjectively from 
vertical temperature profiles at the arrowed positions. The gradients above about 1 cm are too 
weak to include. 
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FIGURE 4. As for figure 2 except Q = 2.88, Ra = 2-38 x lo8, E = 1.55 x 10-4, working fluid water. 
Note the slight deepening of the thermal layer and the increase of the interior temperature from 
Q = 0. 

wave regime was arbitrarily defined as occurring when the maximum peak-to-peak 
amplitude of the temperature fluctuations exceeded 0-OlAT as determined from a 
thermocouple in the centre of the gap width. On this basis it appeared that for both 
fluids a t  Ra > lo8 a single critical value of Q was appropriate, viz. Q, = 3.4, with an 
uncertainty of about 10 %. A few experiments were carried out with varying geometry. 
With the existing gap width the depth was progressively reduced to 3 cm without any 
discernible change in Q,. A larger inner cylinder was introduced to give (b -a) = 5 cm; 
at unity aspect ratio Q, was reduced to w 1. It is difficult to make direct comparisons 
here, since Ra was necessarily reduced to E lo5, but it is interesting to note that still 
Q, - 1. 
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FIGURE 5. A normalized interior temperature TI versus &; note the break in scale at large &. 

Crosses denote paraffin at Ra w 7.5 x lo8 and circles water at Ra % 2.4 x lo8. 

Concentrating now on steady, axisymmetric flows, radial cross-sections of the 
temperature field are presented in figures 3 and 4 for values of Q = 0 and Q = 2-88 
respectively; both cases are for water at  essentially the same Rayleigh number. The 
isotherms are expressed as fractions of AT and only the bottom third of the annulus is 
shown in detail, the gradients above this being very weak. The figures were compiled 
from vertical temperature profiles made by the five thermocouples with measurements 
a t  ten levels in the bottom 0.5 cm and a total of twenty throughout the entire depth. 
Figure 3 is comparable with Rossby's experiments, although the geometry is different, 
specifically the curvature and a higher aspect ratio ( = d / ( b  - a)). In  particular the 
interior temperature is seen to lie between 0.7 and 0.8 of AT. In  figure 4 it  can be seen 
that the thermal layer is thicker and the interior is significantly warmer than the non- 
rotating case. To examine this latter feature a quantity TI was defined as the mean 
temperature recorded by the central three thermocouples in the upper half of the fluid 
and expressed as a fraction of AT. Figure 5 displays TI versus Q for the maximum Ra 
attainable with both water and paraffin, i.e. w 2.4 x 108 and w 7.5 x 108respectively; 
note the break in the abscissa a t  the highest values of Q. 

There is clearly a significant rise in TI as Q increases from zero. Apparently a maxi- 
mum of = 0.9 is reached by Q = 3 with no obvious sign of steady increase to TI = 1 at 
large Q. 

(b)  Structure of the thermal layer 

A characteristic of the thermal-layer structureis that horizontal temperaturegradients 
are much less than the vertical gradients, which implies that a possible balance would 
be between vertical advection of heat and vertical diffusion, at  least over a limited area 
not too close to the base where horizontal advection can be expected to be of import- 
ance; i.e. the heat equation can be simplified to 

W E  = K!&, 
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a solution of which can be written as 

T ( r , z )  = T' - (TI - T(r,o))  exp ( - z /h(r ) ) ,  

where h(r) = - K/w(r) is a scaling length and provided that w is independent of height. 
The results of plotting In (TI - T) against height at  each of the five radial positions for a 
typical value of Q ( = 2.88) are shown in figure 6. Only one example is presented here 
but each value of Q demonstrated the same features over the range examined, including 
time-averaged profiles obtained in the wave regime. Close to the inner cylinder the 
gradient is negative and approximately linear almost to the base; a negative gradient 
represents sinking motion. On moving radially outwards the profiles deviate from the 
linear section as they approach the base; both the magnitude of this deviation and the 
height at  which it occurs increase with radius until the gradient reverses and the 
statically unstable region of rising motion is encountered. The linear sections of the 
curves can be seen as regions of limited vertical extent in which vertical heat advection 
closely balances vertical diffusion; above this there is an advective interior and below 
it, adjacent to the base, it would seem reasonable at this stage to assume that horizontal 
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advection is important in the heat balance, since as the fluid moves outwards across the 
base, warming as it does so, the deviation from the simple vertical balance becomes 
increasingly large. 

The linear sections of figure 6 have a slope of - h-l. The scaling analysis of 5 3 suggests 
that a measure of the thermal-layer thickness should remain almost independent of 
Q for Q < 1. With this in mind values of h were inferred for values of Q over the range 
0-9-42, for all five radial positions, from the gradients of those sections which were 
judged, by eye, to be approximately linear. Although this is a subjective procedure it 
seemed to be the most straightforward way of delineating those regions in which the 
simple vertical balance held. A scaled layer thickness h* = h/ (b  -a) Ra-f was com- 
puted and is plotted in figure 7 against Q on a log diagram. Values of h* at the outer 
radial positions are not shown for small Q since here the extent of the simple vertical 
balance was too limited to allow reliable estimates of h to be made; the appropriate 
values for Q = 0 are shown on the left. If can be seen that certainly for points over the 
stably stratified section there is a slow increase of h* with Q until Q x 1, above which 
there is a more rapid variation. The radial variation of h* shows a broad maximum 
rather more than half-way across the annulus with a marked reduction on approaching 
the outer wall, implying an increase in the vertical velocity. For clarity a single repre- 
sentative error bar is shown, although points at the three highest values of Q 'may be 
subject to  larger errors due to inadequate sampling of the waves. 

(c)  Some wpect.9 of the velocity field 
Flow visualization indicated that typical azimuthal velocities in the symmetric flow 
were relatively slow, at most x 1 mm a-1. This, combined with the near-isothermal 
state of much ofthefluid,indicatessomeoftheproblemswhichmayarise when attempt- 
ing to maintain insulating boundary conditions. A horizontal temperature gradient of 
only 0-025 K cm-l represents, via the thermal wind equation for the parameters 
relevant to the Q = 2.88 case, a vertical shear of the azimuthal velocity of 
w 0.08 mm s-l cm-l and this, if maintained over several centimetres, would be com- 
parable in magnitude to typical velocities. Such an effect w w  observed near the inner 
cylinder in the upper half of the fluid and was probably driven by a slight heat loss of 

FIUUBE 7. Scaled thermal layer thiakness versus Q; h* = h/(b -a) Ra-); symbols; as in figure 0. 
Values for Q = 0 ere shown on the left. 
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less than 60 mW. It is believed, however, that this effect was localized to the immediate 
vicinity of the boundary. 

The vertical shear of the azimuthal velocity component occurs, in the thermal layer, 
over a depth of several millimetres. Consequently reliable direct measurements in this 
region proved practically to be difficult and none of sufficient accuracy or resolution 
were obtained. It was therefore decided to deduce as much as was feasible about the 
velocity structure of the thermal layer from the temperature data taken at  Q = 2.88 
(Ru = 2.38 x 108, E = 1.55 x 10-4, working fluid water) in the symmetric flow regime. 
The equations of motion in component form can be written for two-dimensional flow 
with no time dependence as 

- 2Rv = -pr/po+ "=, 

2 a u  = 

P9 = -% (4.3) 

where the hydrostatic approximation has been made, curvature terms have been 
neglected and po refers to some basic reference state. After forming a complex variable 
7 = u + iv, (4.1)-(4.3) can be combined into a single differential equation, 

qaz - i2ag/v = 2R(F + vu)/v, (4.4) 

where vg is the azimuthal velocity a t  some reference level at which the flow is geo- 
strophic, and F = g /pr dz/2R represents the contribution of the thermal wind in 
balancing a vertical shear of v. From the experimental data F was computed by inter- 
polating between the temperature profiles. The choice of the reference level is some- 
what arbitrary, but was most conveniently taken to be that at which v = vu = 0, since 
this could be determined relatively easily by eye and is close to the top of the thermal 
layer, minimizing the vertical distance over which (4.4) must be integrated to give u 
and v as functions of height. This procedure was carried out midway between the 
thermocouple positions at  r = a+ (0-16,0-38, 0.61) (b -u).  Of these termsneglectedin 
the equations of motion it is estimated that inertial terms would not contribute to u and 
v by more than a few per cent and that in the overall balance curvature terms are at 
least two orders of magnitude less than the leading terms. 

Direct measurements of the azimuthal velocity profile were made 9 cm above the 
base by analysis of successive dye streak photographs. These were then combined with 
the computed velocities to give a radial cross-section of the azimuthal velocity field, 
as shown in figure 8. This is incomplete in the region close to the outer wall, where 
there are insufficient data. Full lines are prograde, dotted lines retrograde and the 
contours are evenly spaced at  intervals of 0.2 mm s-l. In the upper part the azimuthal 
velocity increases almost linearly with radial distance from the inner cylinder and 
there is no significant vertical shear, except in the upper Ekman layer; a typical 
uncertainty in these values is about 10 yo. The maximum v of x 0.9 mm s-l is reached 
about three-quarters across the gap width. In the thermal layer the velocity maximum 
is broader, reaches x 0-7 mm s-l and occurs near the centre of the gap width. However, 
the error on these inferred velocities is rather higher than the direct measurements and 
is essentially a systematic one. Given the amount of manipulation which the basic 
data have undergone an estimate of the worst-possible error in the magnitudes of these 
velocities would be x 25 %. 
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FIGURE 8. Radial cross-section of the azimuthal velocity field, as described in §4(c); full lines 
prograde, dotted lines retrograde, contour interval 0.2 mm 5-1. The arrows indicate the nature of 
the overall radial circulation. 

The arrows in figure 8 indicate the form of the radial circulation, their length is not 
significant. Away from the outer wall there was no observable radial motion outside 
thin boundary layers on the base and lid. The radial flux at the lower boundary turns 
the corner at the outer edge of the base and rises up the outer wall. Now the outer 
profile of figure 7 (In (TT- T) vs. z )  indicates sinking motion at heights greater than a 
few millimetres above the base, implying that upward motion a t  the outer wall 
occupiesless than 9 yo of the annular gap at this level. However, at the top of the outer 
wall the sign of the relative vorticity, as shown by the radial shear of the azimuthal 
velocity, is such that, by Ekman motion, the rising motion here occupies an area 
equivalent to about 30 yo of the annular gap, indicating a thickening of the plume as 
it rises up the wall. 

There is now almost enough information to permit an examination of the heat 
balance of the thermal layer by computing the magnitudes of the vertical and hori- 
zontal advection terms in the heat equation; only w remains to be decided. If it be 
assumed that the vertical velocity has the Ekman layer variation the dependence of w 
on height can be written as 

w = wI( 1 - exp ( - z / S )  (cos z / S  + sin z/S)) ,  

where wI = - K / h .  Hence values of u, to give u aT/ar, were interpolated from the above 
velocity analysis and waT/az was evaluated from the basic temperature profiles. The 
variation of these quantities with height is shown in figure 9 (a) ,  (b) for positions close 
to the inner cylinder and halfway across the gap width. As in the velocity calculations 
the error here is essentially a systematic one, i.e. the shape of the profile is known, also 
the boundary value (zero) and, with lesser confidence, the interior value. Hence a 
single error bar is used to indicate the worst error in the maximum values. 
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Figures 9(u), (b) illustrate the correct interpretation to be placed on the profiles 
shown in figure 7, of In (TI - T) us. 2. Close to the inner cylinder vertical advection 
dominates over horizontal almost to the base; as the fluid moves outwards horizontal 
advection becomes increasingly important and accounts for the tendency of the profiles 
in figure 7 to curve away from linear near the base. The point at which this deviation 
occurs corresponds closely to the height at  which there is a change in the dominant 
term in figure 9 (a), (b). Furthermore this point indicates the position of a maximum in 
the vertical temperature gradient; aaT/az2 must change sign here since it is vertical 
diffusion which is balancing the advection. 

( d )  Heat-jlux measurements 
It was hoped that the temperature measurement8 could be used to infer the heat flux 
by computing the vertical temperature gradients close to the base. However, it was 
found in practice that reliable results could not be obtained because, it is believed, of 
finite probe effects in the region of large vertical temperature gradients immediately 
adjacent to the base near the inner cylinder. However, since the completion of the 
rotating experiments, two non-rotating experiments in the same annulus have been 
completed using a single thermocouple probe in which the leads are introduced hori- 
zontally to minimize errors caused by conduction of heat along the wire. Using the 
motor-driven probe positioner the vertical gradients were evaluated a t  the base and 
from these measurements the Nusselt number was expressed as Nu = kRu-4, where 



Rotating thermal convection heated from below 177 

0.8 

0.6 

3 v 

r l  
I 

- 1  
I 
\ 
\ 

- \  
\ 
\ 
\ 
\ 
\ 

- \ 
I 

- 

0 1 2 3 4 5  

Advection X 1 O2 (K s-') 
FIGURE 9. Horizontal and vertical advective terms for Q = 2.48  at (a) position I and (6) position 

111. Full lines are u aT/& and dotted lines - w aT/&. 

k w 0.2 for water and paraffin, with an uncertainty of 15 yo. This value is in very good 
agreement with the result obtained by Killworth & Manins (1980) for a cell of unity 
aspect ratio. It is hoped that more comprehensive measurements of the heat flux will 
form part of future work. 

5. The similarity solution 
The equations describing the flow regimes mentioned in $3 are, for the most part, 
highly nonlinear partial differential equations, and little progress can be made in their 
solution. However, when the bme buoyancy distribution is quadratic in x, there 
exists a similarity solution in the non-rotating case (Duncan 1966; Killworth & Manins 
1980). This can be extended to the rotating problem, to allow some quantitative 
comparison with observations. This similarity solution, as noted by Killworth & 
Manins, is a special case of the solution of Duncan (1966).? 

The solution has 
$ N xf(z), A - x2g(z) + k ( z ) ,  v N xh(z),  (5.1 a,b,c) 

and requires the base buoyancy distribution A,,(x) = A,,(x/L)~. It trivially satisfies all 
t The comments concerning the sidewall layers in 89 should be recalled. We reiterate our 

belief that, these layers are passive, but know of no proof except in the limit Q S 1. 
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boundary conditions on x = 0, and, provided k(z )  is suitably adjusted, gives a steady 
solution with no net heat flux into the system. 

The equations which are produced by substitution of (1 1 .1 )  into (3.1) to (3.3) are still 
nonlinear, and usually stiff (i.e. they possess growing and decaying solutions over two 
or more length scales differing by an order of magnitude). This presents problems 
numerically; the only reliable solutions were found in the range 0.1 Q Q < 3, which is 
verging on weak rotation at the lower end, and strong rotation at  the upper. Outside 
this range rounding and truncation errors dominate the solution. However, this range 
spans the steady flow found experimentally. 

Using the scaling for the medium rotation regime (neglecting nonlinear niomentum 
terms, therefore), the relevant equations are (3.4)-(3.6). So, writing non-dimensionally 
(and now using the stretched variable C), 

$ = M C ) ,  A = ~ 2 9 ( C ) + k ( C ) ,  v = MC), (5.2aYb,c) 
gives 

where a prime indicates differentiation with respect to 6, and with boundary conditions 

g” = 2f’g - fg’, k” = - fk‘ , h” = Qf‘, fiv = 2g-Qh’, (5.3a,b,c) 

f = f ’ = h = g - l =  k = k ’ + & g ’ =  0, g =  0, (5.7) 

g + o ,  f + f m ,  k - t k , ,  h+h,= C+m, (5.8) 

where f m ,  k ,  are (unknown) asymptotic values, h, is required by the familiar Ekman 
consistency condition a t  the lid and the condition on k‘(0) is obtained from the require- 
ment that no net buoyancy flux enters or leaves the fluid, as 

0 = 1: A&, 0)dx = 1: {x2g’(0) + k‘(0))  dx = ig’(0) + k’(0). (5.9) 

These equations were solved numerically, using the Taylor system (Norman 1972), 
although other methods were tried, particularly stiff system solvers. As noted above, 
solutions well into the weak or strong rotation regimes could not be found (except, of 
course, by assuming the very balance which the similarity solution was designed to 

Solutions for Q = 0.1,1 and 3 are shown in figures 1 0 , l l  and 12 (note the Q-4 factor 
on h, for plotting convenience). When Q is small (0.1) the division between the inner 
buoyancy layer (5 < 3, say), and the outer, homogeneous Ekman layer, is clearly 
marked. The thickness of the Ekman layer is, in this scaling, (2 /Q)+ ,  or 4.5, so that, by 
[ = 9, the interior asymptotics have not been reached. Increasing Q to 1 (figure 11) 
approximately superimposes buoyancy and Ekman layers, so that the familiar Ekman 
spiral is modified by buoyancy effects. When Q is 3 (figure 12), the Ekman spiral is 
confined to C c 3, with an outer buoyancy layer in ‘thermal wind’ balance which is 
again decaying slowly with 6 (as indicated by the strong rotation scaling). 

The way in which interior quantities change with Q is shown in figures 13 and 14. 
Figure 13 shows the variation offm (i.e. $ I / ( x ~ R ~ k ) )  with Q; w decreasesmonotonically 
with Q over the range studied. Also shown are the asymptotes for weak and strong 
rotation. These may be obtained, briefly, as follows. For weak rotation, $3  showed that 
the lower Ekman layer must bring $ and v to zero, while the thermal layer below it 
satisfies the non-rotating equations (with a much reduced I), however). Hence, for the 

test). 
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FIGURE 10. Solutions to the similarity equations (5.3) to (5.6) for the low rotation case Q = 0.1. 
Note that &-*h, and not h, is plotted for convenience. 
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FIQTJFCE 11. As figure 10, but for Q = 1. 

thermal layer, we must have $ -+ $,(x) + [$z(x) as c-. 00 for some functions 
Matching P2 at the base of the Ekman layer yields 

$-,(x). 

(5.10) 

From Killworth & Manins ( 1  980), @Jx) - 0*638x, giving 

f m  - 0.23Q-6, Q - t O ,  (5.11) 

until the very weak regime is attained. Ekman compatibility then yields 

h, - 0.63812 - 0.32, Q + O .  (5.12) 
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FIQIJFLE 13. Variation of interior quantities with Q for the similarity solution: (a) stream function 
$/(z&af); (b)  azimuthal velooity vL/(mRa#).  Asymptotes for weak and strong rotation are also 
shown. 
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FIQURE 14. Variation with Q for the similarity solution of (a) the abyssal buoyanay, k,( =A,) 
(b)  the heat flux NuRa-i. The low Q asymptotes are also shown. 

For strong rotation it is necessary to solve equation (12.2.14) of Stern (1975), or an 
equivalent second-order differential equation for the interior transport, for Ao(x) = 22 .  

This yields a solution of the similarity form, with 

fm - S-fQt, Q+m, 
and, from Eknian compatibility, 

h, - 2iQ-1, &+ao. 

(5.13) 

(5.14) 

It is clear from figure 13 that Q = 0.1 is just entering the weak rotation regime, but 
that Q = 3 haa not yet reached the strong rotation regime, although v has reached a 
maximum at about Q = 2.8. 

Figure 14 shows how k, (i.e. A,) varies with Q. In agreement with figure 5,  it in- 
creases monotonically with Q. For small or zero Q, AI x 0.58, as found by Killworth & 
Manins (1980), but the rate of increase of AI is far weaker than observed. The absolute 
change in A,, however, from Q = 0 to 3, is about 0.2, comparing well with the 0-15 
change found over the same range experimentally. Apart from the differences in 
absolute values in A, (attributable, as Killworth & Manins (1980) note, to the different 
Ao(x! behaviour between theory and experiment), the different rates of increase may be 
caused by our neglect of curvature effects. Finally figure 14 also shows the variation of 
Nusselt number with Q; the asymptote for small Q is that for the non-rotating case. 
There are no direct measurements in the rotating flows to allow comparison. 

Also presented are two diagrams which allow some direct comparison of the flow 
with observations. Figure 15 shows the magnitudes of the terms in the buoyancy 
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FIGURE 15. Advective term balance in the buoyancy equation for the similarity solution, for 

uAx9 w A ~  

& = 2 . 8 . - , ~ =  0 .75 ; - - - ,~=0*5 ;  ..., ~ = 0 * 2 5 .  

equation as functions of [ for Q = 2.8, at three values of x across the annulus. These 
may be compared with observational values in figures 9 (a, b). There is good qualitative 
agreement and surprisingly good quantitative agreement in view of the simplifications 
involved. For example, at the centre of the gap width, figure 15, in dimensional form, 
gives values for the maxima in uaT/ar and - w aT/az of N" 0.05 and z 0.02 K s-l 
respectively at  heights of N" 0.1 cm and !z 0-35 cm. These agree very favourably with 
those shown in figure 9 (b). 

6. Effects of baroclinic instability 
ForallvaluesofQ, there areregionsin theannuluswhere the fluidis statically unstable, 

i.e. A, is positive. For regimes up to and including strong rotation, these regions are con- 
fined to asmall part of thebuoyancylayer (cf.figure 16). Forverystrongrotation,static- 
ally unstable fluid can typically occupy half the volume of the annulus (Daniels 1976). 

Such statically unstable fluid is clearly a powerful source of available potential 
energy for small perturbations to the steady systems previously discussed, in addition 
to the normal sources of energy provided by the horizontal buoyancy gradients. For 
sufficiently large rotation rate, we should then expect a transition from a steady flow 
to a regular wave regime, rather as in more traditional annulus experiments (cf. Hide & 
Mason 1975). Observationally this variation occurs at  values of Q of order unity. Hence 
the strong and very strong rotation regimes are unlikely ever to occur experimentally. 

The existence of statically unstable fluid complicates the normal annulus criteria 
for instability. The requirement that the potential vorticity gradient change sign (it is 
independent of depth beyond the Ekman layer, as both A and v decay at the same rate 
with z )  and the requirement that La-' be sufficiently large, where a is the internal 
deformation radius, can both be written in the form Q > Q,, for some critical value 
depending on the Prandtl number, length scales, and so on. 
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FIGURE 16. Contours of @, v and A in (2, Q space for Q = 1.  The dashedlines (----) are equally 
spaced streamlines, returned upwards by a side-wall layer on z = 1.  The dotted lines (. . .) are 
equally spaced isopycnals. Firm lines are equally spaced contours of v. 

This suggests that transition to a wave regime occurs for Q greater than some Q,. 
Experiments confirm this: Q, = 3-4 & 0.4 for Ra > lo* with little observed variation 
with cr (although Q could not be varied over a wide range), 

The effects of the waves appear to remove most of the predicted behaviour for strong 
rotation. We shall examine only averaged observational values in what follows. It 
appears that AI is almost independent of Q once waves occur, whereas it seems likely 
that A,@) - AI should decay as Q-2 approaching the strong rotation regime. It thus 
appears that part of the effect of instability is to trap more buoyant fluid near the floor, 
and so reduce AI. This can be considered as a stabilizing (i.e. energy-dissipative) 
adjustment to the strong rotation case which would occur in the absence of instability. 
By reducing A,, the horizontal buoyancy gradient at levels above z’ = 0, which would 
otherwise run from zero to A(L, z ’ )  = Ao(L), is now reduced to run from zero to a value 
at x‘ = L which is lees than A,@). This is a removal of some available potential energy 
in order to drive the instability. 

A full theoretical study of the instability would involve a complicated numerical 
scheme; sufficient grid points to resolve the thin side-wall layers make such a study 
unfeasible. However, in the past much useful information has been gleaned from linear 
stability analyses of idealized basic flows, as exemplified by Hide (1969) who, in a 
discussion of the side-wall heated annulus problem, considered the properties of a 
zonal flow with a linear vertical shear, in ‘thermal wind’ balance, with the addition of 
upper and lower Ekman layers and/or sloping end-walls. Similarly, here an idealized 
model of interior azimuthal flow is studied. Fuller details may be found in Hignett 

.( 1979); only a summary is given here. 
The strong rotation regime is represented by a layer of uniform flow, overlying a 

layer with constant shear and much higher stratification. The fluid is bounded above 
and below at z = F, and z = - H, with side walls at  y =  & 8,  and is unbounded in the 
2 direction. The lower layer, in thermal wind balance, has a uniform vertical shear of 
magnitude U I H  and constant buoyancy frequency N (taken as positive, where N2 
= +A,). The upper layei has a uniform flow I J  and constant buoyancy frequency n 
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FIGURE 18. Marginal stability curve for R = 10 for model instabilit,y system, $6. -, 
p = 0*15,----,p = 0.5;---, p = 1.0. 

(m in figure 17). The inviscid problem was studied by Tang (1975); here Ekman layers 
are added on the upper and lower boundaries (cf. Barcilon 1964; Hide 1969). 

The derivation of the quasi-geostrophic equations, their boundary conditions and 
jump criteria across z = 0 are well known and will not be repeated. If a perturbation 
proportional to exp i k (x  - c t )  is assumed, the eigenvalue problem yields a complex 
cubic equation for c (we assume the gravest mode in the y direction). The coefficients 
of this equation are functions of wavenumber, U ,  the Ekman number E (based, aa 
before, on the length L), and the quantities 
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The first of these (the square of the ratio of radius of deformation to length scale) takes 
the approximate value, at the cold wall, of 

B z a-'Q*. (6.2) 

A typically marginal stability curve (ct = 0) for R = 10, p = 0.1,0.5,1.0 is shown in 
figure 18. The familiar anvil-shaped area of instability found by several other workers 
is obtained (cf. similar diagrams for the conventional annulus produced by Mason, 
1975). The main effect of viscosity is a stabilization for large friction. Instability 
further requires B t o  take a value less than about 0.1. Experimentally, for Q = 2-88, 
in the centre of the annular gap R - 7, p N 0.1, E - 1.6 x and B - 0.1. Given 
these values, and the observation that the wave transition has the same character 88 

that known aa 'upper symmetric' in the traditional annulus, it seems likely that the 
experiments were conducted around the upper transition in figure 18. 

Similar confirmation is found by consideration of the shape of the eigenfunction in 
the vertical. Provided R is fairly large, the eigenfunction shows no tendency to decay 
in the vertical (i.e. it  takes values of the same order at all levels), and has very weak 
phase changes with z above the interface. Experiments also showed significant wave 
velocities throughout the depth of the fluid, with no detectable phase change with 
height above the bottom boundary level. 

Such analysis is clearly a very crude representation of the actual instability problem. 
However the measure of agreement, both qualitative and quantitative, suggests that 
at least part of the dynamics in the wave regime is being modelled adequately by this 
simple model. Most encouraging is the qualitative finding that B must be less than some 
critical value for instability, which yields, via (6.2), the requirement that Q be greater 
than some critical value, as observed. 

7. Conclusions 
The dynamics of a rotating fluid annulus differentially heated along a horizontal 

boundary have been described in terms of six different regimes determined mainly 
by the magnitude of a non-dimensional parameter Q, defined on the ratio of the non- 
rotating thermal (or buoyancy) depth scale to the Ekman-layer scale. The flow con- 
sists of one or more horizontal layers adjacent to the heated and cooled boundary, a 
vertical flow up the side wall at the warm end of the base, and an almost neutrally 
stratified interior circulation. Side-wall and top layers complete the picture. Experi- 
ments have been carried out for values of Q of order unity. Flow properties vary 
smoothly with Q and in agreement with the scaling analysis until Q x 3.4 when (baro- 
clinic) instability sets in. 

The equations of motion remain nonlinear partial differential equations in character, 
despite the many scaling simplifications that can be made. In  the case of a quadratic 
imposed temperature field, the similarity solution of Killworth & Manins (1980) can 
be extended to include rotation, and, over the range for which solutions can be found, 
there is favourable agreement with observation. 

In terms of the large-scale ocean circulation Q would be expected to be large, say 
Q x 100, which would lie in the strongly rotating regime. However, the regimes and 
scalings presented here, while complicated, apparently possess only a limited relevance 
to geophysical problems such as large-scale oceanic overturning, due to the lack of 
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three-dimensional effects. A closed basin forces azimuthal pressure gradients and there- 
fore radial motion in the interior. Stern (1975) extended his analysis of the annulus 
problem to one for a closed basin and found no effect on the parametric dependence of 
the buoyancy-layer thickness. However, Pedlosky ( 1969), linearizing the problem 
about a basic, vertical density gradient, found side walls to be very important. It 
would be valuable, therefore, for future experiments to include the insertion of full 
radial barriers, to introduce the effect of a closed basin, and to examine the effect of 
baroclinic instability on the growth features of the flow, particularly the heat flux and 
buoyancy-layer depth. 
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